Project - Coloring Platonic Solids:

Problem Set 2: Tetrahedron and Hexahedron

Name:

Tetrahedron:

1. Make a tetrahedron model with gumdrops and toothpicks.
2. How many different tetrahedrons can we make under the following conditions? Draw diagrams.
a. Use two different colors of gumdrops.
b. We cannot move the object.
3. How many tetrahedrons that you made in Problem 1 are actually the same if we can rotate? How many rotations does a tetrahedron have? (*)
4. How many tetrahedrons that you made in Problem 1 are actually the same if we switch a pair of vertices? (i.e., how many reflectional symmetries does a tetrahedron have?) (**)
5. So if how many different tetrahedrons can we make if we do not double-count the same ones above? (What does "different" mean??)

Hexahedron
6. How many different hexahedrons can we make under the following conditions? Draw diagrams.
a. We want to make a hexahedron with two different colors of gumdrops.
b. We cannot move the object.
7. How many hexahedrons that you made in Problem 1 are actually the same if we can rotate? (How many rotations does a hexahedron have?) (**)
8. How many hexahedrons that you made in Problem 1 are actually the same if we switch a pair of vertices? (How many reflection symmetries does a hexahedron have?) (**)
9. If we can move the objects around how many different hexahedron ca we make? (What does "different" mean??) In other words, how many different hexahedrons can we make without double-counting the same ones?
10. For each of the following polyhedron, how many different polyhedrons can you make with two colors of gumdrops? (*)
a. Octahedron
b. Dodecagon
c. Icosahedrons

